Seven Stage Frequency Divider in I²L Technique triggerable by the positive flank of the input signal Monolithic integrated circuit in I^2L technique designed primarily for use in electronic organs. The device incorporates seven flip-flops with externally accessible inputs and outputs. It is pin compatible with the SAJ 110 seven stage frequency divider. The individual flip-flops can be interconnected to form a divider chain. Some flip-flop stages are already internally series-connected as shown below. The SAA 1004-N may be driven by sinusoidal as well as by square-wave input signals. The flip-flops change state with each positive-going flank of the input voltage (see Fig. 3). Special features are: low impedance push-pull outputs, high input impedance, low current consumption and wide supply voltage operating range. Fig. 1: Block diagram of the SAA 1004-N The figures in brackets correspond to the pin numbers Fig. 2: SAA 1004-N in plastic package 20 A 14 according to DIN 41 866 Weight approximately 1.1 g Dimensions in mm | Maximum | Ratinge | |-----------|---------| | waxiiiium | naunus | | Supply voltage | V ₇ | 15.5 V | |-------------------------------------|----------------|-------------| | Input voltage | V_I | $\leq V_7$ | | Output current per stage | 10 | ± 5 mA | | Ambient operating temperature range | T_{amb} | -10+60 °C | | Storage temperature range | T_S | -30 +125 °C | | Characteristics per Divider Stage at V7 | = 9 V, R _L = | = 5.6 kΩ, T _{aml} | ₅ = 25 °C | |--|-------------------------|----------------------------|----------------------| | Current consumption (unloaded) | 17 | 8.0 | mA | | Input threshold voltage (see Fig. 4) | V_{IH} | 6 | V | | | V_{IL} | 2 | V | | Input resistance | $oldsymbol{r}_i$. | 40 | kΩ | | Output voltage high state R_L connected to pin 1 | V_{OH} | V ₇ — 0.9 | V | | Output voltage low state R_L connected to pin 7 | VOL | 0.3 | V | | Output resistance high state | r_H | 100 | Ω | | Output resistance low state | r_L | 200 | Ω | | Rise time of the output voltage | t_r | 100 | ns | | Fall time of the output voltage | t_f | 100 | ns | ## **Recommended Operating Conditions** | Supply voltage | V_7 | 7 15 | V | | |---|-----------|-----------------|-----|--| | Input trigger voltage | V_{IH} | $> (V_7 - 1 V)$ | | | | | VIL | < 1 | V | | | Load resistance at the output (connected to pin 1 or pin 7) | R_L | > 5.6 | kΩ | | | Maximum input frequency | f_{max} | 50 | kHz | | Fig. 3: Pulse diagram of a divider stage Fig. 4: Typical trigger range and admissible input voltage versus supply voltage