

3602A, 3622A FAMILY 3602, 3622 FAMILY 2048 BIT (512×4) HIGH SPEED PROM

	3602A-2 3622A-2	3602A 3622A	3602 3622
Typ. T _A (ns)	45	55	60
Max. T _A (ns)	60	70	70

- Low Power Dissipation --0.3mW/Bit
- Open Collector (3602A, 3602) or Three State (3622A, 3622) Outputs
- Simple Memory Expansion--Chip Select Input Lead
- Replaces Two 256×4 PROMs
 Without Increasing Board
 Area
- Polycrystalline Silicon Fuse
 For Higher Reliability
- Hermetic 16-Pin DIP

The Intel® 3602A/3622A and 3602/3622 device families are 2048-bit bipolar PROMs organized as 512 words by 4 bits. The fast second generation 3602A/3622A joins its Intel predecessor, the 3602/3622, featuring 70 ns. A higher speed version, the 3602A-2/3622A-2, is now available at 60 ns. All 3602A/3622A specifications, except programming, are the same as the 3602/3622. Once programmed, the 3602A/3622A are interchangeable with the 3602/3622.

The PROMs are manufactured with all outputs initially logically high. Logic low levels can be electrically programmed in selected bit locations. Both open collector and three-state outputs are available. The power dissipation is typically 0.3 mW/bit.

The pin configuration of the PROMs is the same as the popular 1K bit, 256×4 PROMs with the exception that CS₂ (pin 14) is address A₈. The bit density of existing 256×4 PROM systems can be easily doubled without an increase in area with the 3602A/3622A or 3602/3622. These PROMs, like the 256×4 PROMs, are in 16-pin dual in-line package.

A pin compatible, mask programmable 3302/3322 ROM is available for large volume production systems initially using the 3602/3622. Please contact Intel directly for details on these ROMs.

PROGRAMMING

The programming specifications are described in the PROM/ROM Programming Instructions on page 3-55.

Absolute Maximum Ratings*

Temperature Under Bias	-65°C to +125°C
Storage Temperature	-65°C to +160°C
Output or Supply Voltages	
All Input Voltages	
	100mA

*COMMENT

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

D. C. Characteristics: All Limits Apply for V_{CC} = +5.0V ±5%, T_A = 0°C to +75°C

		Limits					
Symbol	Parameter	Min.	in. Typ. ^[1] Max.		Unit	Test Conditions	
I _{FA}	Address Input Load Current		-0.05	-0.25	mA	$V_{CC} = 5.25V, V_A = 0.45V$	
I _{FS}	Chip Select Input Load Current		-0.05	-0.25	mA	$V_{CC} = 5.25V, V_{S} = 0.45V$	
I _{RA}	Address Input Leakage Current			40	μΑ	V _{CC} = 5.25V, V _A = 5.25V	
IRS	Chip Select Input Leakage Current			40	μΑ	$V_{CC} = 5.25 \text{V}, V_{S} = 5.25 \text{V}$	
V _{CA}	Address Input Clamp Voltage		-0.9	-1.5	V	$V_{CC} = 4.75V, I_A = -10mA$	
V _{CS}	Chip Select Input Clamp Voltage		-0.9	-1.5	٧	V _{CC} = 4.75V, I _S = -10mA	
V _{OL}	Output Low Voltage		0.3	0.45	V	V _{CC} = 4.75V, I _{OL} = 15mA	
I _{CEX}	Output Leakage Current			40	μΑ	V _{CC} = 5.25V, V _{CE} = 5.25V	
lcc	Power Supply Current		110	140	mA	$\frac{V_{CC}}{CS}$ =5.25V, $V_{A0} \rightarrow V_{A8}$ = 0V	
VIL	Input "Low" Voltage		<u> </u>	0.85	V	V _{CC} = 5.0V	
V _{IH}	Input "High" Voltage	2.0			V	V _{CC} = 5.0V	

3622A, 3622A-2, 3622 ONLY

Symbol	Parameter	Min.	Typ.[1]	Max.	Unit	Test Conditions
llol	Output Leakage for High Impedance Stage			40	μΑ	V _O =5.25V or 0.45V, V _{CC} =5.25V, CS =2.4V
1 _{SC} [2]	Output Short Circuit Current	-15	-25	-60	mA	V _{CC} =5.00V, T _A =25°C, V _O = 0V
V _{OH}	Output High Voltage	2.4			V	I _{OH} = -2.4mA, V _{CC} = 4.75V

NOTES: 1. Typical values are at 25°C and at nominal voltage.

^{2.} Unmeasured outputs are open during this test.

A. C. Characteristics $V_{CC} = +5V \pm 5\%$, $T_A = 0$ °C to +75°C

		1	ЛАХ. LIMIT	•	UNIT		
SYMBOL	PARAMETER	3602A-2 3622A-2	3602A 3622A	3602 3622		CONDITIONS	
t _{A++} , t _A	Address to Output Delay	60	70	70	ns		
t _{S++}	Chip Select to Output Delay	30	30	30	ns	CS = V _{IL} to Select the PROM	
t _S	Chip Select to Output Delay	30	30	30	ns		

Capacitance (1) TA = 25°C, f = 1 MHz

SYMBOL	DADAMETER	LIMITS		LINIT	TEST CONDITIONS		
	PARAMETER	TYP.	MAX.	UNIT	TEST CONDITIONS		
CINA	Address Input Capacitance	4	10	pF	V _{CC} = 5V	`V _{IN} = 2.5V	
C _{INS}	Chip-Select Input Capacitance	6	10	pF	V _{CC} = 5V	V _{IN} = 2.5V	
C _{OUT}	Output Capacitance	7	12	pF	V _{CC} = 5V	V _{OUT} = 2.5V	

NOTE 1: This parameter is only periodically sampled and is not 100% tested.

Switching Characteristics

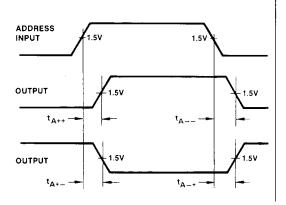
Conditions of Test:

Input pulse amplitudes - 2.5V
Input pulse rise and fall times of
5 nanoseconds between 1 volt and 2 volts
Speed measurements are made at 1.5 volt levels
Output loading is 15 mA and 30 pF

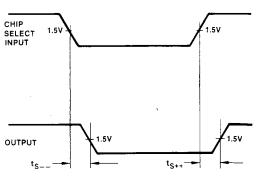
15 mA TEST LOAD

VCC

300Ω


300Ω

600Ω


Waveforms

ADDRESS TO OUTPUT DELAY

Frequency of test - 2.5 MHz

CHIP SELECT TO OUTPUT DELAY

